Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors.

نویسندگان

  • Xiuxin Liu
  • Kazue Hashimoto-Torii
  • Masaaki Torii
  • Chen Ding
  • Pasko Rakic
چکیده

During mitotic division in the telencephalic proliferative ventricular zone (VZ), the nuclei of the neural precursors move basally away from the ventricular surface for DNA synthesis, and apically return to the surface for mitotic division; a process known as interkinetic migration or "to-and-fro" nuclear translocation. The cell, which remains attached to the ventricular surface, either continues cycling, or exits the cycle and migrates to the subventricular zone or the developing cortical plate. Although gap junctions/hemichannels are known to modulate DNA synthesis via Ca(2+) waves, the role of Ca(+) oscillations and the mechanism of nuclear translocation in the VZ precursors are unclear. Here, we provide evidence that, during apical nuclear migration, VZ precursors display dynamic spontaneous Ca(2+) transients, which depend on functional gap junctions/hemichannels via ATP release and Ca(2+)-mobilizing messenger diffusion. Furthermore, we found that blocking gap junctions/hemichannels or short hairpin RNA-mediated knockdown of Cx43 (connexin 43) retards the apically directed interkinetic nuclear migration accompanied with changes in the nuclear length/width ratio. In addition, we demonstrated that blocking functional gap junctions/hemichannels induces phosphorylation of small GTPase cdc42 in the VZ precursors. The basal phase of interkinetic migration is much slower and appears to be mediated passively by mechanical forces after cell division. Our findings indicate that functional interference with gap junctions/hemichannels during embryonic development may lead to abnormal corticogenesis and dysfunction of the cerebral cortex in adult organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells.

During early retinal development, progenitor cells must divide repeatedly to expand the progenitor pool. During G(1) and G(2) of the cell cycle, progenitor cell nuclei migrate back-and-forth across the proliferative zone in a process termed interkinetic nuclear movement. Because division can only occur at the ventricular surface, factors that affect the speed of nuclear movement could modulate ...

متن کامل

Continuity with ganglionic eminence modulates interkinetic nuclear migration in the neocortical pseudostratified ventricular epithelium.

Cells of the pseudostratified ventricular epithelium (PVE) undergo interkinetic nuclear migration whereby position of cell soma with nucleus is systematically dependent upon cell cycle phase. We examined if the interkinetic nuclear migration in the neopallial PVE is influenced by tissue continuity with the ganglionic eminence (GE) of the basal forebrain in explants from embryonic day 13 mice. W...

متن کامل

Neurogenesis and neuronal migration in the forebrain of the TorsinA knockout mouse embryo.

Early-onset generalized torsion dystonia, also known as DYT1 dystonia, is a childhood onset heritable neurological movement disorder involving painful, involuntary muscle contractions, sustained abnormal postures, and repetitive movements. It is caused by a GAG deletion in the Tor1A gene located on chromosome 9. TorsinA, the product of the Tor1A gene, is expressed throughout the brain beginning...

متن کامل

Reconstitution of native-type noncrystalline lens fiber gap junctions from isolated hemichannels

Gap junctions contain numerous channels that are clustered in apposed membrane patches of adjacent cells. These cell-to-cell channels are formed by pairing of two hemichannels or connexons, and are also referred to as connexon pairs. We have investigated various detergents for their ability to separately solubilize hemichannels or connexon pairs from isolated ovine lens fiber membranes. The sol...

متن کامل

SUN1/2 and Syne/Nesprin-1/2 Complexes Connect Centrosome to the Nucleus during Neurogenesis and Neuronal Migration in Mice

Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 12  شماره 

صفحات  -

تاریخ انتشار 2010